Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### Tris(4-methylphenyl)phosphine selenide

#### **Alfred Muller**

Research Centre in Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa

Correspondence e-mail: mulleraj@uj.ac.za

Received 29 November 2010; accepted 2 December 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.073; data-to-parameter ratio = 21.6.

In the title molecule,  $C_{21}H_{21}PSe$  or  $PSe(C_7H_7)_3$ , the P atom has a distorted PSeC<sub>3</sub> tetrahedral environment, formed by the Se atom [P=Se = 2.1119 (5) Å] and three aryl rings. Two short intramolecular C-H···Se contacts occur. In the crystal, weak intermolecular C-H···Se interactions link the molecules into zigzag double chains propagating in [100]. The previous report of this structure [Zhdanov *et al.* (1953). *Dokl. Akad. Nauk SSSR* (*Russ.*) (*Proc. Nat. Acad. Sci. USSR*), **92**, 983–985] contained no geometrical data.

#### **Related literature**

For the previous structure determination, see: Zhdanov *et al.* (1953). For background to phosphorus- and selenium-containing ligands, see: Muller *et al.* (2006, 2008); Roodt *et al.* (2003). For a description of the Cambridge Structural Database, see: Allen (2002); For ligand cone angles, see: Tolman (1977).

CH<sub>3</sub>

Experimental

*Crystal data* C<sub>21</sub>H<sub>21</sub>PSe

 $M_r = 383.31$ 

Z = 4

Mo  $K\alpha$  radiation

 $0.36 \times 0.14 \times 0.13 \text{ mm}$ 

 $\mu = 2.14 \text{ mm}^{-1}$ 

T = 100 K

Monoclinic,  $P2_1/c$  a = 9.8330 (4) Å b = 19.0584 (9) Å c = 11.9136 (4) Å  $\beta = 124.969$  (2)° V = 1829.55 (13) Å<sup>3</sup>

#### Data collection

| Bruker X8 APEXII 4K KappaCCD           | 12931 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 4555 independent reflections           |
| Absorption correction: multi-scan      | 3748 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2004)                 | $R_{\rm int} = 0.032$                  |
| $T_{\min} = 0.513, \ T_{\max} = 0.769$ |                                        |
|                                        |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.031$ | 211 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.073$               | H-atom parameters constrained                              |
| S = 1.03                        | $\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$  |
| 4555 reflections                | $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D-\mathrm{H}\cdots A$    | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------|------|-------------------------|--------------|---------------------------|
| C12−H12···Se              | 0.95 | 3.04                    | 3.495 (2)    | 111                       |
| C12-H12···Se <sup>i</sup> | 0.95 | 3.18                    | 3.890 (2)    | 133                       |
| $C2-H2B\cdots Se^{ii}$    | 0.98 | 3.09                    | 4.067 (2)    | 176                       |
| C36−H36···Se              | 0.95 | 3.13                    | 3.556 (2)    | 109                       |

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The University of the Free State (Professor A. Roodt) is thanked for the use of its diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5761).

#### References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794– 5801.
- Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.
- Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tolman, C. A. (1977). Chem. Rev. 77, 313-348.
- Zhdanov, G. S., Pospelov, V. A., Umanski, M. M. & Glushkova V. P. (1953). Dokl. Akad. Nauk SSSR (Russ.) (Proc. Nat. Acad. Sci. USSR), 92, 983–985.

Se=P-CH<sub>3</sub>

#### Acta Cryst. (2011). E67, o45 [doi:10.1107/S1600536810050567]

### Tris(4-methylphenyl)phosphine selenide

### A. Muller

#### Comment

There has been extensive development in understanding the transition metal phosphorous bond by various groups, including our own, with various techniques such as single-crystal X-ray crystallography, multi nuclear NMR and IR (Roodt *et al.*, 2003). As part of this systematic investigation we are now also studying selenium bonded phosphorus ligands (see Muller *et al.* 2008) This way there is no steric crowding effect, abeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, *e.g.* in *trans*-[Rh(CO)Cl{P(OC<sub>6</sub>H<sub>5</sub>)<sub>3</sub>}<sub>2</sub>] coneangles variation from 156° to 167° was observed for the two phosphite ligands (Muller, *et al.* 2006). The  $J({}^{31}P-{}^{77}Se)$  coupling can also be used as an additional probe to obtain more information regarding the nature of the phosphorous bond. Reported here, as part of the above continuing study, the single-crystal structure of the compound P(4—Me—C<sub>6</sub>H<sub>3</sub>)<sub>3</sub> is presented. This was done as no geometrical data are available from the CCDC (Cambridge Structural Database; Version 5.31, update of August; Allen, 2002) on the previously published structure reported by Zhdanov *et al.*, 1953.

Crystals of the title compound, (I), packs in the  $P2_1/c$  (Z = 4) space group with the molecules lying on general positions. All geometrical features of the molecule (Allen, 2002) are as expected with the selenium atom and the three aryl groups adopting a distorted arrangement about phosphorous (see Fig. 1 and Table 1). The cone angle was found to be 161.1° when the Se—P distance is adjusted to 2.28 Å (the default value used in Tolman, 1977).

The packing in the unit cell show Se-atoms forming dimeric units with bi-furcated H-atoms of C12. These units are propagated along the [100] direction with additional weak C—H…Se interactions (See Table 2, Fig. 2).

#### **Experimental**

SeP(4-Me-C<sub>6</sub>H<sub>3</sub>)<sub>3</sub> and KSeCN were purchased from Sigma-Aldrich and used without purification. Eqimolar amounts of KSeCN and the SeP(4-Me—C<sub>6</sub>H<sub>3</sub>)<sub>3</sub> compound (*ca* 0.04 mmol) were dissolved in the minimum amounts of methanol (10 – 20 ml). The KSeCN solution was added drop wise (5 min.) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give colourless blocks.

Analytical data:  ${}^{31}P$  {H} NMR (CDCl<sub>3</sub>, 121.42 MHz): $\delta = 34.60$  (t,  ${}^{1}J_{P-Se} = 717.6$  Hz)

#### Refinement

The aromatic and methylene H atoms were placed in geometrically idealized positions (C—H = 0.93 - 0.98 Å) and constrained to ride on their parent atoms with  $U_{iso}(H) = 1.2U_{eq}(C)$  and  $U_{iso}(H) = 1.5U_{eq}(C)$  respectively, with torsion angles refined from the electron density for the methyl groups. The highest residual electron density is located 0.94 Å from Se.

### Figures



Fig. 1. View of (I) (50% probability displacement ellipsoids). H atoms have been omitted for clarity. For the C atoms, the first digit indicates the ring number and the second digit indicates the position of the atom in the ring.

Fig. 2. Packing diagram of (I) showing the dimeric units formed and the propagation along [100] with H…Se links as dashed lines.

F(000) = 784

 $\theta = 2.5 - 28.3^{\circ}$  $\mu = 2.14 \text{ mm}^{-1}$ T = 100 KBlock, colorless  $0.36 \times 0.14 \times 0.13 \text{ mm}$ 

 $D_{\rm x} = 1.392 {\rm Mg m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 3903 reflections

#### Tris(4-methylphenyl)phosphine selenide

#### Crystal data

| C <sub>21</sub> H <sub>21</sub> PSe |
|-------------------------------------|
| $M_r = 383.31$                      |
| Monoclinic, $P2_1/c$                |
| Hall symbol: -P 2ybc                |
| a = 9.8330 (4)  Å                   |
| <i>b</i> = 19.0584 (9) Å            |
| c = 11.9136 (4) Å                   |
| $\beta = 124.969 \ (2)^{\circ}$     |
| $V = 1829.55 (13) \text{ Å}^3$      |
| Z = 4                               |

#### Da

| Data collection                                             |                                                                          |
|-------------------------------------------------------------|--------------------------------------------------------------------------|
| Bruker X8 APEXII 4K KappaCCD<br>diffractometer              | 4555 independent reflections                                             |
| graphite                                                    | 3748 reflections with $I > 2\sigma(I)$                                   |
| Detector resolution: 8.4 pixels mm <sup>-1</sup>            | $R_{\rm int} = 0.032$                                                    |
| $\omega$ and $\phi$ scans                                   | $\theta_{\text{max}} = 28.4^{\circ},  \theta_{\text{min}} = 2.1^{\circ}$ |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2004) | $h = -13 \rightarrow 9$                                                  |
| $T_{\min} = 0.513, \ T_{\max} = 0.769$                      | $k = -25 \rightarrow 24$                                                 |
| 12931 measured reflections                                  | $l = -15 \rightarrow 15$                                                 |

#### Refinement

Refinement on  $F^2$ 

Primary atom site location: structure-invariant direct methods

| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
|---------------------------------|-------------------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.031$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.073$               | H-atom parameters constrained                                                       |
| <i>S</i> = 1.02                 | $w = 1/[\sigma^2(F_o^2) + (0.0326P)^2 + 0.6745P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 4555 reflections                | $(\Delta/\sigma)_{\rm max} = 0.006$                                                 |
| 211 parameters                  | $\Delta \rho_{max} = 0.46 \text{ e } \text{\AA}^{-3}$                               |
| 0 restraints                    | $\Delta \rho_{min} = -0.30 \text{ e} \text{ Å}^{-3}$                                |
|                                 |                                                                                     |

#### Special details

**Experimental**. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 640 frames were collected with a frame width of  $0.5^{\circ}$  covering up to  $\theta = 28.41^{\circ}$  with 99.1% completeness accomplished.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A | Å | 2) |
|------------------------------------------------------------------------------------------------|---|----|
|------------------------------------------------------------------------------------------------|---|----|

|     | x           | У             | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|-------------|---------------|--------------|-------------------------------|
| Se  | 0.35082 (2) | 0.927791 (11) | 0.29390 (2)  | 0.01903 (7)                   |
| Р   | 0.53055 (6) | 0.85475 (3)   | 0.32421 (5)  | 0.01317 (11)                  |
| C1  | 1.0689 (3)  | 0.81013 (13)  | 0.9344 (2)   | 0.0271 (5)                    |
| H1A | 1.1148      | 0.8552        | 0.9806       | 0.041*                        |
| H1B | 1.1584      | 0.7806        | 0.9472       | 0.041*                        |
| H1C | 1.0164      | 0.7866        | 0.9735       | 0.041*                        |
| C2  | 0.8493 (3)  | 0.94613 (13)  | 0.0318 (2)   | 0.0278 (5)                    |
| H2A | 0.8035      | 0.9171        | -0.0502      | 0.042*                        |
| H2B | 0.9700      | 0.9400        | 0.0919       | 0.042*                        |
| H2C | 0.8233      | 0.9955        | 0.0050       | 0.042*                        |
| C3  | 0.2520 (3)  | 0.55993 (11)  | 0.1189 (2)   | 0.0255 (5)                    |
| H3A | 0.2297      | 0.5513        | 0.0286       | 0.038*                        |
| H3B | 0.1492      | 0.5544        | 0.1132       | 0.038*                        |
| H3C | 0.3348      | 0.5263        | 0.1850       | 0.038*                        |
| C11 | 0.6948 (2)  | 0.84178 (10)  | 0.50352 (18) | 0.0138 (4)                    |
| C12 | 0.7425 (2)  | 0.89697 (11)  | 0.59514 (19) | 0.0172 (4)                    |
| H12 | 0.6909      | 0.9415        | 0.5629       | 0.021*                        |
| C13 | 0.8654 (2)  | 0.88729 (11)  | 0.73382 (19) | 0.0193 (4)                    |
| H13 | 0.8978      | 0.9255        | 0.7953       | 0.023*                        |
|     |             |               |              |                               |

| C14 | 0.9415 (2) | 0.82244 (12) | 0.78349 (19) | 0.0182 (4) |
|-----|------------|--------------|--------------|------------|
| C15 | 0.8954 (2) | 0.76788 (11) | 0.6907 (2)   | 0.0184 (4) |
| H15 | 0.9489     | 0.7237       | 0.7228       | 0.022*     |
| C16 | 0.7729 (2) | 0.77686 (11) | 0.55230 (19) | 0.0169 (4) |
| H16 | 0.7421     | 0.7388       | 0.4907       | 0.020*     |
| C21 | 0.6314 (2) | 0.88090 (10) | 0.24281 (19) | 0.0147 (4) |
| C22 | 0.8020 (2) | 0.88731 (10) | 0.31340 (19) | 0.0169 (4) |
| H22 | 0.8714     | 0.8766       | 0.4084       | 0.020*     |
| C23 | 0.8724 (3) | 0.90939 (11) | 0.2458 (2)   | 0.0192 (4) |
| H23 | 0.9895     | 0.9143       | 0.2957       | 0.023*     |
| C24 | 0.7742 (3) | 0.92422 (10) | 0.1068 (2)   | 0.0181 (4) |
| C25 | 0.6036 (3) | 0.91762 (12) | 0.0366 (2)   | 0.0245 (5) |
| H25 | 0.5346     | 0.9275       | -0.0587      | 0.029*     |
| C26 | 0.5322 (3) | 0.89686 (12) | 0.1030 (2)   | 0.0246 (5) |
| H26 | 0.4149     | 0.8934       | 0.0533       | 0.030*     |
| C31 | 0.4463 (2) | 0.76849 (10) | 0.25790 (18) | 0.0138 (4) |
| C32 | 0.4990 (3) | 0.72710 (11) | 0.1928 (2)   | 0.0191 (4) |
| H32 | 0.5801     | 0.7446       | 0.1806       | 0.023*     |
| C33 | 0.4336 (3) | 0.66068 (11) | 0.1462 (2)   | 0.0210 (4) |
| H33 | 0.4693     | 0.6334       | 0.1009       | 0.025*     |
| C34 | 0.3169 (2) | 0.63330 (11) | 0.16437 (19) | 0.0177 (4) |
| C35 | 0.2645 (3) | 0.67488 (11) | 0.2292 (2)   | 0.0203 (4) |
| H35 | 0.1842     | 0.6570       | 0.2420       | 0.024*     |
| C36 | 0.3273 (2) | 0.74153 (11) | 0.2750 (2)   | 0.0187 (4) |
| H36 | 0.2894     | 0.7691       | 0.3183       | 0.022*     |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$     | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|--------------|-----------------|-----------------|--------------|-------------|--------------|
| Se  | 0.01853 (11) | 0.01859 (11)    | 0.01791 (10)    | 0.00640 (8)  | 0.00924 (9) | 0.00104 (8)  |
| Р   | 0.0130 (2)   | 0.0139 (2)      | 0.0114 (2)      | 0.00109 (19) | 0.0064 (2)  | 0.00008 (17) |
| C1  | 0.0196 (11)  | 0.0416 (14)     | 0.0134 (10)     | 0.0004 (10)  | 0.0055 (9)  | 0.0040 (9)   |
| C2  | 0.0286 (12)  | 0.0355 (14)     | 0.0263 (11)     | -0.0021 (10) | 0.0198 (10) | 0.0042 (9)   |
| C3  | 0.0248 (11)  | 0.0173 (11)     | 0.0307 (12)     | -0.0015 (9)  | 0.0137 (10) | -0.0017 (8)  |
| C11 | 0.0125 (9)   | 0.0181 (10)     | 0.0111 (8)      | -0.0012 (7)  | 0.0070 (7)  | 0.0004 (7)   |
| C12 | 0.0183 (10)  | 0.0191 (10)     | 0.0160 (9)      | 0.0017 (8)   | 0.0109 (8)  | 0.0010 (7)   |
| C13 | 0.0193 (10)  | 0.0255 (11)     | 0.0139 (9)      | -0.0025 (9)  | 0.0100 (9)  | -0.0049 (8)  |
| C14 | 0.0118 (9)   | 0.0299 (12)     | 0.0132 (9)      | -0.0026 (8)  | 0.0073 (8)  | 0.0014 (8)   |
| C15 | 0.0132 (9)   | 0.0198 (10)     | 0.0192 (10)     | 0.0014 (8)   | 0.0076 (8)  | 0.0062 (8)   |
| C16 | 0.0146 (9)   | 0.0177 (10)     | 0.0162 (9)      | -0.0003 (8)  | 0.0076 (8)  | -0.0004 (7)  |
| C21 | 0.0173 (10)  | 0.0140 (9)      | 0.0135 (9)      | -0.0011 (8)  | 0.0091 (8)  | -0.0005 (7)  |
| C22 | 0.0177 (10)  | 0.0171 (10)     | 0.0142 (9)      | 0.0002 (8)   | 0.0082 (8)  | 0.0002 (7)   |
| C23 | 0.0151 (10)  | 0.0212 (11)     | 0.0208 (10)     | -0.0004 (8)  | 0.0100 (9)  | -0.0001 (8)  |
| C24 | 0.0237 (10)  | 0.0150 (10)     | 0.0195 (10)     | -0.0008 (8)  | 0.0147 (9)  | 0.0002 (7)   |
| C25 | 0.0232 (11)  | 0.0330 (13)     | 0.0143 (9)      | -0.0013 (10) | 0.0091 (9)  | 0.0047 (8)   |
| C26 | 0.0166 (10)  | 0.0350 (13)     | 0.0175 (10)     | -0.0041 (9)  | 0.0070 (9)  | 0.0041 (9)   |
| C31 | 0.0114 (9)   | 0.0154 (10)     | 0.0117 (8)      | 0.0009 (7)   | 0.0050 (8)  | 0.0003 (7)   |
| C32 | 0.0189 (10)  | 0.0213 (11)     | 0.0227 (10)     | -0.0017 (8)  | 0.0152 (9)  | -0.0038 (8)  |

| C33             | 0.0230 (11)   | 0.0214 (11) | 0.0236 (10) | 0.0005 (9)  | 0.0163 (9)  | -0.0051 (8) |
|-----------------|---------------|-------------|-------------|-------------|-------------|-------------|
| C34             | 0.0145 (9)    | 0.0165 (10) | 0.0163 (9)  | 0.0021 (8)  | 0.0054 (8)  | 0.0023 (7)  |
| C35             | 0.0212 (10)   | 0.0192 (11) | 0.0273 (11) | -0.0004 (9) | 0.0179 (10) | 0.0022 (8)  |
| C36             | 0.0213 (11)   | 0.0198 (10) | 0.0216 (10) | 0.0013 (8)  | 0.0161 (9)  | 0.0001 (8)  |
|                 |               |             |             |             |             |             |
| Geometric parar | neters (Å, °) |             |             |             |             |             |
| Se—P            |               | 2.1119 (5)  | C15-        | -C16        | 1.3         | 87 (3)      |
| P-C31           |               | 1.806 (2)   | C15-        | -H15        | 0.9         | 500         |
| P—C21           |               | 1.810(2)    | C16–        | -H16        | 0.9         | 500         |
| P-C11           |               | 1.8106 (19) | C21-        | -C22        | 1.3         | 85 (3)      |
| C1—C14          |               | 1.509 (3)   | C21-        | -C26        | 1.3         | 98 (3)      |
| C1—H1A          |               | 0.9800      | C22–        | -C23        | 1.3         | 95 (3)      |
| C1—H1B          |               | 0.9800      | C22–        | -H22        | 0.9         | 500         |
| C1—H1C          |               | 0.9800      | C23-        | -C24        | 1.3         | 86 (3)      |
| C2—C24          |               | 1.509 (3)   | C23-        | -H23        | 0.9         | 500         |
| C2—H2A          |               | 0.9800      | C24—        | -C25        | 1.3         | 86 (3)      |
| C2—H2B          |               | 0.9800      | C25—        | -C26        | 1.3         | 83 (3)      |
| C2—H2C          |               | 0.9800      | C25—        | -H25        | 0.9         | 500         |
| C3—C34          |               | 1.503 (3)   | C26–        | -H26        | 0.9         | 500         |
| С3—НЗА          |               | 0.9800      | C31-        | -C36        | 1.3         | 95 (3)      |
| С3—Н3В          |               | 0.9800      | C31-        | -C32        | 1.3         | 97 (3)      |
| С3—Н3С          |               | 0.9800      | C32—        | -C33        | 1.3         | 84 (3)      |
| C11—C12         |               | 1.390 (3)   | C32—        | -H32        | 0.9         | 500         |
| C11—C16         |               | 1.395 (3)   | C33—        | -C34        | 1.3         | 86 (3)      |
| C12—C13         |               | 1.391 (3)   | C33–        | -H33        | 0.9         | 500         |
| C12—H12         |               | 0.9500      | C34—        | -C35        | 1.3         | 94 (3)      |
| C13—C14         |               | 1.389 (3)   | C35–        | -C36        | 1.3         | 81 (3)      |
| С13—Н13         |               | 0.9500      | C35—        | -H35        | 0.9         | 500         |
| C14—C15         |               | 1.391 (3)   | C36–        | -H36        | 0.9         | 500         |
| C31—P—C21       |               | 105.74 (9)  | C15-        | -C16C11     | 120         | 0.03 (18)   |
| C31—P—C11       |               | 105.50 (9)  | C15-        | -C16—H16    | 120         | 0.0         |
| C21—P—C11       |               | 106.11 (9)  | C11-        | -C16—H16    | 120         | 0.0         |
| C31—P—Se        |               | 113.32 (6)  | C22–        | -C21-C26    | 118         | 3.64 (18)   |
| C21—P—Se        |               | 112.88 (7)  | C22–        | -C21—P      | 122         | 2.94 (14)   |
| C11—P—Se        |               | 112.64 (7)  | C26–        | -C21—P      | 118         | .40 (15)    |
| C14—C1—H1A      |               | 109.5       | C21–        | -C22-C23    | 120         | 0.34 (18)   |
| C14—C1—H1B      |               | 109.5       | C21–        | -C22—H22    | 119         | 9.8         |
| H1A—C1—H1B      |               | 109.5       | C23–        | -C22—H22    | 119         | 9.8         |
| C14—C1—H1C      |               | 109.5       | C24—        | -C23-C22    | 120         | 0.98 (19)   |
| H1A—C1—H1C      |               | 109.5       | C24—        | -C23—H23    | 119         | 0.5         |
| H1B—C1—H1C      |               | 109.5       | C22–        | -C23—H23    | 119         | 0.5         |
| C24—C2—H2A      |               | 109.5       | C25–        | -C24C23     | 118         | 3.43 (19)   |
| C24—C2—H2B      |               | 109.5       | C25-        | -C24—C2     | 120         | 0.15 (18)   |
| H2A—C2—H2B      |               | 109.5       | C23–        | -C24C2      | 121         | .41 (19)    |
| C24—C2—H2C      |               | 109.5       | C26–        | -C25-C24    | 121         | .11 (19)    |
| H2A—C2—H2C      |               | 109.5       | C26-        | -C25—H25    | 119         | 0.4         |
| H2B—C2—H2C      |               | 109.5       | C24–        | -C25—H25    | 119         | 0.4         |
| С34—С3—Н3А      |               | 109.5       | C25–        | -C26-C21    | 120         | 0.48 (19)   |

| С34—С3—Н3В                    | 109.5        | С25—С26—Н26     |              | 119.8        |
|-------------------------------|--------------|-----------------|--------------|--------------|
| НЗА—СЗ—НЗВ                    | 109.5        | C21—C26—H26     |              | 119.8        |
| С34—С3—Н3С                    | 109.5        | C36—C31—C32     |              | 118.80 (18)  |
| НЗА—СЗ—НЗС                    | 109.5        | C36—C31—P       |              | 118.96 (15)  |
| НЗВ—СЗ—НЗС                    | 109.5        | C32—C31—P       |              | 122.22 (15)  |
| C12—C11—C16                   | 119.12 (17)  | C33—C32—C31     |              | 120.29 (19)  |
| C12—C11—P                     | 119.65 (15)  | С33—С32—Н32     |              | 119.9        |
| C16—C11—P                     | 121.22 (14)  | С31—С32—Н32     |              | 119.9        |
| C11—C12—C13                   | 120.32 (19)  | C32—C33—C34     |              | 121.15 (19)  |
| С11—С12—Н12                   | 119.8        | С32—С33—Н33     |              | 119.4        |
| C13—C12—H12                   | 119.8        | С34—С33—Н33     |              | 119.4        |
| C14—C13—C12                   | 120.87 (19)  | C33—C34—C35     |              | 118.29 (19)  |
| C14—C13—H13                   | 119.6        | C33—C34—C3      |              | 120.78 (19)  |
| С12—С13—Н13                   | 119.6        | C35—C34—C3      |              | 120.90 (19)  |
| C13—C14—C15                   | 118.43 (18)  | C36—C35—C34     |              | 121.24 (19)  |
| C13—C14—C1                    | 121.52 (19)  | С36—С35—Н35     |              | 119.4        |
| C15—C14—C1                    | 120.0 (2)    | С34—С35—Н35     |              | 119.4        |
| C16—C15—C14                   | 121.20 (19)  | C35—C36—C31     |              | 120.22 (19)  |
| C16—C15—H15                   | 119.4        | С35—С36—Н36     |              | 119.9        |
| C14—C15—H15                   | 119.4        | С31—С36—Н36     |              | 119.9        |
| C31—P—C11—C12                 | -155.80 (16) | C21—C22—C23—C24 |              | -1.1 (3)     |
| C21—P—C11—C12                 | 92.29 (17)   | C22—C23—C24—C25 |              | 1.0 (3)      |
| Se—P—C11—C12                  | -31.70 (17)  | C22—C23—C24—C2  |              | -178.22 (19) |
| C31—P—C11—C16                 | 23.05 (18)   | C23—C24—C25—C26 |              | 0.1 (3)      |
| C21—P—C11—C16                 | -88.86 (17)  | C2—C24—C25—C26  |              | 179.3 (2)    |
| Se—P—C11—C16                  | 147.15 (14)  | C24—C25—C26—C21 |              | -1.0 (4)     |
| C16—C11—C12—C13               | -0.6 (3)     | C22—C21—C26—C25 |              | 0.9 (3)      |
| P-C11-C12-C13                 | 178.27 (15)  | P-C21-C26-C25   |              | 179.49 (18)  |
| C11—C12—C13—C14               | -0.6 (3)     | C21—P—C31—C36   |              | -164.39 (15) |
| C12—C13—C14—C15               | 1.9 (3)      | C11—P—C31—C36   |              | 83.44 (16)   |
| C12-C13-C14-C1                | -176.97 (19) | Se-P-C31-C36    |              | -40.24 (16)  |
| C13-C14-C15-C16               | -2.0 (3)     | C21—P—C31—C32   |              | 17.16 (19)   |
| C1-C14-C15-C16                | 176.88 (18)  | C11—P—C31—C32   |              | -95.02 (17)  |
| C14—C15—C16—C11               | 0.8 (3)      | Se—P—C31—C32    |              | 141.31 (15)  |
| C12-C11-C16-C15               | 0.5 (3)      | C36—C31—C32—C33 |              | 0.1 (3)      |
| P-C11-C16-C15                 | -178.35 (15) | P-C31-C32-C33   |              | 178.60 (16)  |
| C31—P—C21—C22                 | -111.10 (18) | C31—C32—C33—C34 |              | -0.9 (3)     |
| C11—P—C21—C22                 | 0.6 (2)      | C32—C33—C34—C35 |              | 1.0 (3)      |
| Se—P—C21—C22                  | 124.48 (16)  | C32—C33—C34—C3  |              | -177.32 (19) |
| C31—P—C21—C26                 | 70.41 (18)   | C33—C34—C35—C36 |              | -0.3 (3)     |
| C11—P—C21—C26                 | -177.85 (17) | C3—C34—C35—C36  |              | 178.00 (19)  |
| Se—P—C21—C26                  | -54.02 (18)  | C34—C35—C36—C31 |              | -0.4 (3)     |
| C26—C21—C22—C23               | 0.1 (3)      | C32—C31—C36—C35 |              | 0.5 (3)      |
| PC21C22C23                    | -178.38 (15) | P-C31-C36-C35   |              | -177.98 (16) |
| Hydrogen-bond geometry (Å, °) |              |                 |              |              |
| D—H···A                       | <i>D</i> —Н  | H···A           | $D \cdots A$ | D—H··· $A$   |
| C12—H12…Se                    | 0.95         | 3.04            | 3.495 (2)    | 111          |

| C12—H12…Se <sup>i</sup>                                                 | 0.95 | 3.18 | 3.890 (2) | 133 |
|-------------------------------------------------------------------------|------|------|-----------|-----|
| C2—H2B…Se <sup>ii</sup>                                                 | 0.98 | 3.09 | 4.067 (2) | 176 |
| C36—H36…Se                                                              | 0.95 | 3.13 | 3.556 (2) | 109 |
| Symmetry codes: (i) $-x+1$ , $-y+2$ , $-z+1$ ; (ii) $x+1$ , $y$ , $z$ . |      |      |           |     |







